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Abstract- In this paper, the utility of credibilistic critical values in crisp conversion of fuzzy data sets is considered. 

Conversion of this type becomes essential mainly when clustering of fuzzy data sets is carried out. In this paper 

performance of two popular clustering algorithms namely Fuzzy c–means and Fuzzy c–medoids algorithms are 

evaluated under credibilistic critical value crisp conversion is carried out. Two synthetic data sets of varying nature 

are used in the comparative study. Some popular fuzzy clustering validity measures were employed in this study. 
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I. INTRODUCTION 

One of the major branches of data mining is cluster analysis. Cluster analysis finds applications in various 

branches of scientific studies which include image processing, mining of text data, mining of time series data, 

identification of patterns in spatial data, medical diagnostic studies etc. Ever since cluster analysis was 

introduced, researchers have developed various types of clustering algorithms of diversified nature. A vast 

majority of clustering algorithms available in literature are specifically meant for data of precise or crisp nature. 

The introduction of fuzzy set theory by [1] has led to databases consisting of imprecise data sets. Hence, there is 

a need for developing clustering algorithms specifically for imprecise or fuzzy data sets. The crux of the 

problem in dealing with imprecise data sets is the absence of proper definition of levels of similarity or 

dissimilarity between objects of the database which assume imprecise data values. There are several measures 

available for defining the dissimilarity between objects assuming imprecise values. Some of them are due to [2, 

3, 4, 5, 6, 7, 8, 9]. Recently [10] and [11] have used certain measures of dissimilarity of imprecise data objects 

based on Credibility theory founded by [12]. They have studied the performance of   k–means and k–medoids 

clustering algorithm by using such measures for certain data sets. In this paper, it is proposed to study the use of 

credibilistic critical values under Fuzzy c–means and Fuzzy c–medoids clustering algorithms. A comparative 

study on their performances in using the credibilistic critical values has been carried out with the help of few 

clustering validity measures which are specifically meant for fuzzy clustering algorithms. For detailed review on 

fuzzy clustering one can refer to the recent works of [13] and [14].  

The paper is organized as follows: Section II provides the background of Credibility Theory, definition of 

fuzzy variable, Credibility distribution, Optimistic and Pessimistic values. Section III explains the process of 

creating crisp data set using the concept of credibilistic critical values.  Section IV gives an overview of Fuzzy 

c–means clustering and Fuzzy c–medoids clustering along with some validity measures. Section V gives details 

of an experimental study carried out. Section VI presents conclusions drawn from this study. 

II. CREDIBILITY THEORY 

Credibility theory is a new branch of mathematics for studying the behavior of fuzzy phenomena introduced 
by Liu [2]. Some basic concepts and definitions related with credibility theory are stated below. 

Let  be a non empty set and P be the power set of  . Each element in P  is called an event. In order to 

present an axiomatic definition of credibility measure, it is necessary to assign a number ( )Cr A  to each event A , 

where ( )Cr A  indicates the credibility that A will occur. The following four axioms are satisfied by a credibility 

measure. 

1. (Normality) ( ) 1Cr     

2. (Monotonicity) ( ) ( )Cr A Cr B whenever A B   

3. (Self Duality) ( ) ( ) 1cCr A Cr A    

4. (Maximality) { } { }i i i iCr A Sup Cr A  for any events { }iA  with { } 0.5i iSup Cr A  . 
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The triplet ( , , )P Cr is called a credibility space. A credibility measurable function from credibility space

( , , )P Cr  to the set of real numbers is called a fuzzy variable. The membership function  of a fuzzy variable   

defined on the credibility space ( , , )P Cr  is derived from the credibility measure by 

( ) (2 { }) 1,x Cr x x                                                                                (1) 

Membership function represents the degree that the fuzzy variable takes on some prescribed value. Here we 

shall provide some definitions related with credibility theory which are useful for understanding contents of this 

paper. 

Credibility Distribution 

The credibility distribution : [0,1]R  of a fuzzy variable   is defined by, 

      ( ) / ( )x Cr x                                                                                            (2) 

Critical Values 

For every fuzzy variable  , [12] defines two crisp critical values, namely, Optimistic and Pessimistic values 

as follows. 

Optimistic Value 

Let   be a fuzzy variable, and (0,1]  . The α–optimistic value of  is defined as 

     
sup ( ) sup{ { } }r Cr r                                                                                                                            (3) 

Pessimistic Value 

Let   be a fuzzy variable, and (0,1]  . The α–pessimistic value of  is defined as 

     
inf ( ) inf{ { } }r Cr r                                                                                                                              (4) 

It shows that the α–optimistic value 
sup ( )  is the supremum value that   achieves with credibility at least α, 

and the α–pessimistic value 
inf ( )  is the infimum value that   achieves with credibility at least α. 

III. CRISP CONVERSION OF FUZZY DATA SETS 

Consider the data set consisting of n objects, namely 
1 2, ,..., nO O O each having p attributes. In this study, we 

treat the values assumed by these objects with respect to these attributes as fuzzy variables having well defined 

credibility distributions. That is, the value assumed by the 
thi object with respect to thj attribute is treated as the 

fuzzy variable ( 1,2,..., ; 1,2,..., )ij i n j p   .We shall assume that each of these fuzzy variables take m  possible 

values ( 1, 2,..., )u

ij u m  . Under this set up the data matrix will appear as follows. 

1 11
1 1 1 1 1 111 11 11

11 1 11 11
1 1 1 1 1 111 11 11

11

1 1 1

1 11

1 1 1

u m u mu m
j j j p p p

j pu m u mu m
j j j p p p

u mu m
ij ij iji i i

i ij u mu m
ij ij iji i i

       
  

       

    
 

    

    
          
     

 
    
  

1

1

1 11

1 1 1

1 1 11

1 1 1

u m

ip ip ip

ip u m

ip ip ip

u m u mu m
nj nj nj np np npn n n

n nj npu m u mu m
nj nj nj np np npn n n

  


  

       
  

       

 
 
 
 
 
   
        
 
 
                       

 

When a data matrix of the above form is available for the process of a clustering, one faces the task of a 

defining the dissimilarity levels between different pairs of the objects in the data set. In order to make use of 

well defined dissimilarity measures meant for crisp data sets one can think of converting the above fuzzy data 

set into a crisp data set by using certain tools available in credibility theory. [10] used the concept of credibility 

critical values and [11] used the concept of credibility expectation in creating crisp data sets. These two 

approaches of creating crisp data sets have been compared using k–means and k–medoids clustering algorithms 

for certain synthetic data sets. It was found that the use of credibility critical values in creating crisp data sets is 

more efficient than using credibility expectation. Therefore, in this study we restrict ourselves to crisp 

conversion of the fuzzy data set using credibility critical values. It may be noted that for every fuzzy variable 

one can determine the pessimistic and optimistic values for a pre-determined value α on using for the definitions 

stated in the previous section. We shall denote these pessimistic and optimistic values by 
ij  and 

ij

respectively. Using these values one can develop another crisp value on averaging them. We shall denote them 



International Journal of Computational Intelligence and Informatics, Vol. 3: No. 3, October - December 2013 
 

215 
 

by
1

2
ij ij ij  


    . Thus on using these three values, namely pessimistic, optimistic and average of pessimistic 

and optimistic values one can define three p-component crisp vectors, namely, 

   1 2 1 2, ,..., , , ,...,i i i ip i i i ip          and 
1 2, ,...,i i i ip   

    
  
 

for every objects in the data set.  Once these 

values identified, any appropriate distance metric can be used to measure the levels of dissimilarity. Thus, we 

have three different dissimilarity measures as given below. 

1. Distance based on pessimistic value  
2

1

p

ij ik kj

k

d  


   

2. Distance based on optimistic value  
2

1

p

ij ik kj

k

d  


   

3. Distance based on average of optimistic and pessimistic values 

2

1

p

ij ik kj

k

d  
  



 
  

 
  

These distances can be used as an input and a clustering algorithm can be implemented. 

For example, consider the following matrix A which describes the distributions of fuzzy variables 

corresponding to 5 objects each having 2 attributes. 

48.0711 49.0711 50.0711 50.7267 51.7267 52.7267

0.4314 0.1361 1 0.0760 1 0.4893

42.9337 43.9337 44.9337 46.4788 47.4788 48.4788

1 0.8693 0.6221 0.2399 1 0.3377

45.2957 46.2957 47.2957

1 0.5797 0.3510
A

   
   
   

   
   
   

 
 



48.0275 49.0275 50.0275

1 0.9027 0.9001

43.6667 44.6667 45.6667 49.4081 50.4081 51.4081

0.2638 0.5499 1 0.1839 0.9448 1

45.5391 46.5391 47.5391 49.7971 50.7971 51.7971

0.1455 1 0.4018 1 0.4909 0.1112

 
  
  

   
   
   

   
  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

50.0711 52.7267 48.0711 51.7267

44.9337 47.4788 42.9337 47.4788

,46.2957 50.0275 45.2957 48.0275

45.6667 51.4081 44.6667 50.4081

47.5391 50.7971 46.5391 49.7971

B C

   
   
   
    
   
   
   
   

 and

49.0711 52.2267

43.9337 47.4788

45.7957 49.0275

45.1667 50.9081

47.0391 50.2971

D

 
 
 
 
 
 
 
 

. 

In the following section we study the performance of Fuzzy c–means clustering algorithm and Fuzzy c–medoids 
clustering algorithm with the help of crisp data sets developed in the above explained manner. To main the 
readability of the paper we present below brief descriptions of Fuzzy c–means clustering algorithm and Fuzzy c–
medoids clustering algorithm. Definitions of certain validity measures are also given. 

IV. FUZZY CLUSTERING 

In k–means and k–medoids algorithm the data set is divided into k disjoint and exhaustive clusters, where 

each object belongs to exactly one cluster. In Fuzzy C–Means clustering objects can belong more than one 

cluster. The objects nearer to the cluster center are assigned with higher membership values and the objects far 

from the cluster center are assigned with lower membership values. 

A. Fuzzy  C–Means Clustering Algorithm 

 The Fuzzy C–Means (FCM) algorithm is an iterative clustering method introduced by [15] and improved by 
[16]. This method produces c clusters by minimizing the objective function  

      2

1 2

1 1

( , , ,... )
N c

m

c ij ij

i j

J U c c c u d
 

                                                                                                                           (5)
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where m is any real number which is greater than 1 (1 )m   , iju is the degree of membership of ith object 

with cluster j, 
ijd is the distance between the ith object and the weighted centroid of the jth  cluster denoted by 

1

1

, 1,2,...,

N
m

ij i

i

j N
m

ij

i

u x

c j c

u





 



                                                                                                                                                                   

(6)

 The steps involved in Fuzzy c–means clustering algorithm are as follows. 
 

Step 1: Fix the number of clusters c, where c is (2 )c N  and the termination tolerance value  .  

Step 2: Select the parameter fuzziness exponent value m, where1 m  . 

Step 3: Calculate the fuzzy membership values by using the formula 

2

1

1

1
ij

c m
ij

k ik

u

d

d

 
 

 





 
 
 



 

Step 4: Calculate the c number of centroid vectors on using the formula 

1

1

, 1,2,...,

N
m

ij i

i

j N
m

ij

i

u x

c j c

u





 



 

Step 5: Find the value of the objective function 

2

1 2

1 1

( , , ,... )
N c

m

c ij ij

i j

J U c c c u d
 

 . 

Step 6: Repeat the step 3 to step 5 until  ( 1)

,max k k

i j ij iju u    , for prespecified 0  .   

B. Fuzzy c–medoids Clustering Algorithm 

Fuzzy c–medoids (FCMdd) algorithm is an iterative clustering method introduced by [17]. Consider X be a 

set of N objects, { 1, 2,..., }iX x i N  . Let ( , )i jd x x be the distance between the object ix  and jx . Let 

1 2{ , ,..., },c jV v v v v X   represent a subset of the object set X with c number of elements. Like Fuzzy c–means 

method, this method also produces c clusters by minimizing the objective function  

1 1

( , ) ( , )
N c

m

ij i j

i j

J V X u d x v
 

                                                                                                                                                            (7) 

where m is a fuzzy exponent or fuzzifier which is greater than 1 (1 )m   , iju is the degree of membership 

value of ith object of cluster j, ( , )i jd x v is the distance or dissimilarity between the ith object and the jth cluster 

center
jv .  

Fuzzy C–Medoids clustering method is carried out by optimizing the objective function in an iterative 

process. The steps involved in Fuzzy C–Medoids clustering algorithm are as follows. 
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Step 1: Fix the number of clusters c, where c is (2 )c N  and the termination tolerance value  . 

Step 2: Select the parameter fuzziness exponent value m, where1 m  . 

Step 3: Randomly choose the initial set of medoids 
1 2{ , ,..., }old

cV v v v from
cX . 

Step 4: Calculate the fuzzy membership values by using the formula 

1
( 1)

1

1

1

1

( , )

1

( , )

m

i j

ij

c m

k i k

d x v
u

d x v



 
 

 



 
  
 



 
 
 



. 

Step 5: Compute the new medoidsV . 

Step 6: Find the value of the objective function 

1 1

( , ) ( , )
N c

m

ij i j

i j

J V X u d x v
 

  

Step 6: Repeat the step 3 to step 6 until 
oldV V  or  ( 1)

,max k k

i j ij iju u    , for prespecified 0  .  

C. Cluster Validity Measures 

By applying a suitable clustering algorithm, one can partition the given data set. The clustering validity 

measures can help us to validate the partitioning by a numeric value. There are a number of validity measures 

available in order to validate fuzzy clustering algorithms. Some popular validity measures are Partition 

coefficient, Modified Partition Coefficient, Partition Entropy, Fukuyama and Sugeno Index and Xie and Beni 

Index. Definitions of these validity measures are presented below. 

Partition Coefficient 

Partition coefficient corresponding to a fuzzy partition of the data sets is defined as 

    2

1 1

1 N c

ij

i j

PC u
N  

                                                                                                                                               (8) 

where iju is the membership value of the ith object with respect to jth cluster. This index due to [18] takes values 

in the interval [1/c,1].  A value closer to 1 indicates clustering tends towards crisp clustering. It may be noted 

that a highly fuzzified partitioning is created when the membership values are closer to 1/c, which makes the 

value of partition coefficient very small. This indicates that a value closer to 1/c reveals the absence of a 

clustering tendency of objects in the given data sets. 

 

Modified Partition Coefficient 

To reduce the monotonic tendency of partition coefficient, an index proposed by [19] is defined as  

     1 (1 )
1

c
MPC PC

c
  


.                                                                                                                                 (9) 

Partition Entropy 

The partition entropy due to [20] is defined as  

     
2

1 1

1
log .

N c

ij ij

i j

PE u u
N  

                                                                                                                               (10) 

The Partition Entropy assumes values in the range [0,log2c]. The partition entropy will take the maximum value 

2log c  and the minimum value zero. A value closer to 0 indicates that the clustering is crisper for the given data 

set and a higher value indicates the absence of clustering tendency of the objects. 

Fukuyama and Sugeno Index (FS Index) 
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A validity measure proposed by [21] is 

     

2 2

1 1 1 1

( , ) ( , )

N c N c
m m

ij i j ij j

i j i j

m m

FS u x v u v v

J u v K u v

   

   

 

 
                                                                                                                            (11) 

where 1

1

1

1
,

N
m

ij ic
i

j j N
mj

ij

i

u x

v v v
c

u







 





. Here ( , )mJ u v is the objective function of the Fuzzy c–means clustering 

algorithm which measures the compactness of the clusters and ( , )mK u v measures the separation. A smaller 

value of this index indicates a good partition.  

 

Xie and Beni Index (XB Index) 

A validity index defined by [22] and modified by [23] is 

      

2
2

1 1

2

min

N c

ij i j

i j

i j
i j

u x v

XB
N v v

 









.                                                                                                                                

(12) 

A good clustering makes the value of XB index smaller. 

 

In the following section of this paper we compare the performances of Fuzzy c–means and Fuzzy c–medoids 

clustering algorithms when crisp conversion of a fuzzy data set is carried out using credibilistic critical values. 

Two synthetic data sets generated from multivariate normal populations have been used in the comparative 

study. 

V. EXPERIMENTAL STUDY 

Dataset–1: The first data set consisting of 120 objects are generated from three different trivariate normal 
populations having equal mean vectors namely, [45 35 25] but with different variance–covariance matrices 

2 0 0 1 0 0

0 1 0 , 0 1 0

0 0 4 0 0 1

   
   
   
      

and

2 1 0

1 2 0

0 0 2

 
 

 
  

. 

  The first variance-covariance matrix defines a system where the underlying variables are uncorrelated but 
with unequal variances, the second data set is associated with the variance-covariance matrix where all the 
components have unit variance and the third data set identifies the system where the variables have no 
constraints about their statistical dependency. Since the same mean vector is used for all the three populations, 
the data objects assume values which overlap. 

From each of these three populations, 40 objects are generated using the R library function mvrnorm. 

Dataset–2: The second data set containing 120 objects were generated in the above mentioned manner but with 
different mean vectors, namely, [45 35 25], [25 10 15] and [30 25 20]. Since the elements of these three mean 
vectors are separated to some extent. The data set generated in this manner is expected to have good separation 
in terms of the magnitude of values. We shall use the matrices constructed in the above manner to create fuzzy 
distributions by adopting the procedure described below.   

Each element of the matrix which is nothing but a crisp quantity is used to create the credibility distribution 
of a fuzzy variable which can assume 5 different values. These values are obtained by adding the quantities 2,    
-1, 0, 1 and 2 with the given crisp value. Each of these values assigned a membership value in a random manner 
by generating 5 uniform random numbers from the interval [0, 1] ensuring that one of the values is 1. The 
membership value 1 is assigned to one of these 5 values in a random manner. For example, if 47.01 is a crisp 
number then the numbers generated are 45.01, 46.01, 47.01, 48.01 and 49.01. If the randomly generated uniform 
random numbers 0.0292, 0.6692, 1.0000, 0.6967, 0.5219 then the resulting fuzzy data is 

45.01 46.01 47.01 48.01 49.01

( ) 0.0292 0.6692 1.0000 0.6967 0.5219

x

x

 
 
 

 

Thus, the procedure of creating credibility distributions for the given crisp quantity is leads to the expansion 
of 120 3 data matrix into 120 15 data matrix. Assigning the membership value 1 to one of the possible values 
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of fuzzy variable is essential because a necessary and sufficient condition for a function to be a membership 
function is it should take value 1 for at least one x. 

The enlarged data matrices were considered as fuzzy data sets. This fuzzy data set are converted into crisp 
data set by using the concept of pessimistic, optimistic and average values by taking three different levels of α, 
namely, 0.70, 0.80 and 0.90. Thus, we have generated nine sets of crisp data. Fuzzy C–Means and Fuzzy           
C–Medoids algorithms have been employed to these nine new data sets. 

The data set consisting of 120 objects is partitioned into 3 clusters by using Fuzzy C–Means algorithm and 
Fuzzy C–Medoids algorithm. Since there are three classes in the data set, the number of clusters is taken as 
three. Clusters of objects have been formed using pessimistic, optimistic and average values. 

Table I gives the values of various validity measures corresponding to different values of α used in the 
definition of critical values of a fuzzy variable for data set–1 (overlapping data set). It gives the values under 
both FCM and FCMdd clustering methods for all the three approaches of crisp conversion namely, pessimistic, 
optimistic and average. 

TABLE I. CLUSTER VALIDITY MEASURES FOR THE DATA SET - 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table II gives 
the values of 
various validity 
measures 
corresponding to different values of α used in the definition of critical values of a fuzzy variable for data set–2 
(separated data set). It gives the values under both FCM and FCMdd clustering methods for all the three 
approaches of crisp conversion namely, pessimistic, optimistic and average. 

 

 

 

 

 

 

 

 

Pessimistic 

Critical Value 0.70 0.80 0.90 

Validity measures/Algorithm FCM FCMdd FCM FCMdd FCM FCMdd 

Partition Coefficient 0.5653 0.6473 0.6053 0.6758 0.5664 0.6688 

Modified Partition Coefficient 0.3479 0.4709 0.4079 0.5137 0.3496 0.5032 

Partition Entropy 1.0746 0.8799 0.9846 0.8179 1.0660 0.8277 

FS Index 383.2965 330.3434 306.8261 279.0392 352.3595 293.4524 

Xie and Beni Index 0.9313 0.6103 0.7026 0.5667 0.9467 0.6298 

Optimistic 

Critical Value 0.70 0.80 0.90 

Validity measures/Algorithm FCM FCMdd FCM FCMdd FCM FCMdd 

Partition Coefficient 0.5403 0.6423 0.5810 0.6423 0.5653 0.6527 

Modified Partition Coefficient 0.3104 0.4635 0.3714 0.4634 0.3479 0.4791 

Partition Entropy 1.1295 0.8892 1.0393 0.8922 1.0734 0.8740 

FS Index 404.4727 341.6970 315.0724 289.0516 314.0741 276.4682 

Xie and Beni Index 1.1732 0.6007 0.7771 0.5695 1.0765 0.6417 

Average of Pessimistic and Optimistic Values 

Critical Value 0.70 0.80 0.90 

Validity measures/Algorithm FCM FCMdd FCM FCMdd FCM FCMdd 

Partition Coefficient 0.5413 0.6693 0.5635 0.6527 0.5723 0.6516 

Modified Partition Coefficient 0.3120 0.5039 0.3453 0.4790 0.3585 0.4774 

Partition Entropy 1.1255 0.8361 1.0764 0.8686 1.0538 0.8759 

FS Index 323.0227 239.5323 290.8059 249.9105 308.7714 274.6766 

Xie and Beni Index 0.9970 0.5440 0.8159 0.5342 0.9032 0.6752 
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TABLE II. CLUSTER VALIDITY MEASURES FOR THE DATA SET - 2 

 

 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSIONS 

This paper studies the choice of converting a fuzzy data set into a crisp data set using the concept of 
credibilistic critical values when fuzzy clusters are to be produced. It is to be noted that the quality of the fuzzy 
clusters depends on the choice of a clustering algorithm being used in this study. In this work the Fuzzy           
c–means and the Fuzzy c–medoids clustering algorithms have been evaluated with the help of some popular 
fuzzy clustering validity measures when crisp conversion is carried out with the different critical levels. The 
following are the observations made from the experimental study carried out in Section V. 

i.      In both the data sets FCMdd is shown perform well with respect to all the six clustering validity 
measures. 

ii.      Even though the superiority of a FCMdd is visible for all the data sets and all levels of crisp conversion, it 
is difficult to identify the best level used for crisp conversion. 

iii.      In the case of separated data sets crisp conversion using average of pessimistic and optimistic values with 
critical level 0.70 produces fuzzy clusters of a good quality. 

iv.       For overlapping data set pessimistic conversion with critical level 0.80 produces good quality clusters 
with respect to PC, MPC and PE. 
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